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0.1. Motivation
Assumption: A sequence of ID r.v. {X;}, S, => " | X,

Theorem 1: Ep[X1] = p,, Ep[(X] — )% = 02
P(ag Sn+Sn_n'LLp<b) —><I><b_'up> —@(a_ﬂp),VangR,
n Vn o o

Question: If P is not unique, P € P the set of probability measures is ambiguity,
What is Central limit theorem?

(1) Capacity: (v, V), where
v(A) = inf Q(A), V(A) = sup Q(A).

QeP QEP

(2) Lower-upper expectation: £[£] and E[¢]

g€l = 5“2 Eqlgl,  E[¢] = sup Egl¢]
€ QEP

. .. . S, Sp—npiQ
What is the distribution of =+ 7 ?



0.2. Applications: Statistics and Finance

Confidence regions and Statistical hypothesis testing
EqlXi] = po, E[Xi] = 1, £1Xi] = p.

Sn Sn -
sup (a < —+ el
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f < b ?
C5:r€1PQ (a . + NG < ) —
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Mathematical finance, Pricing in incomplete markets, VaR:
a:) =7

<b> —7
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introdlciion 0.3. IID: Indistinguishable and independently dis-
noducton tributed, Epstein(2005) Recursive Utility

Introduction
Main Question

(1) A sequence r.v.s (X;) on the measurable space (€2, F).
2) G, =0 (Xy,...,X,) and G = UG,
(3) P a set of probability measures on ({2, G) and P are equivalent on each G,,.

(4) Upper and lower expectations:

E[Y] :=sup EglY], £&Y] = inf EglY]=—-E[-Y],
QeP QeP

(5) Conditional upper and lower expectations:

EY |G, =esssup EglY | Gy), €Y |G, =ess inf EglY | G,
QeP QeP

(6) Independence: (X;) are recursively P-independent if for any n

E [Xn ‘ gn—l] =E [Xn] = [ and £ [Xn | gn—l] = £ [Xn] = M

(7) Time Consistency: Say that the r.v.s (X;) are P-consistent if, for any n and

¢ € C (R?) satisfying ¢ (Z?:_ll X, Xn> € H,
n—1 n—1

v (Z Xi,Xn> | G o (Z Xi,Xn>]
i=1 i=1

E|E =K




0.4. Bifurcation Model: Dynamic Risk Measures, Bion-
Nadal(2006)

Let (2;,F;), j = 1,2,---, be a sequence of measurable spaces, and ({2, F) is
the product space (H Q5,11 .7-}) Let P; be a set of probability measures on
L ]

(84, F;), 3 = 1,2,---, respectively, and P is the set of all product measures on
(€2, F) that can be formed by taking selections from each P;.

"o H Q; | == P.(B"), B"GH]-"

J=n+1

P(B") = /Q Py(dn) /Q Prafwn, diy) -+ / Ty (w1, 200 Pact 0, dioy).
1 2 n

n—1
and w" Y = (wy,wa, - -+ ,wy_1) € [ ;. Probability kernel P, ;(w =Y, dw;) from
j=1

i1 -l
(TT S, 1T F;) to (S, F;) defined :
j=1 " j=1

Pi_1 (WY, duwy) =]Ai_1(w(i‘1))P/§(dwi) 1 [Ag_l(w(i_l))P/i(dwi)

i1
where A, € [[ Fj, 1 > 2.

J=1



0.5. Motivation

Assumption: A sequence of ID r.v. {X;}, S, => " | X,
Theorem 1: Ep[X| = 1, Ep[(X; — p*] = 0%, then

lim Ep [¢ (i” - S ;%”“3)] =&,[p(0B))], VYo € Cy(R).

Where &[0 B] is the value of the solution {y; } of the BSDE att = (

1 1
Yy = o(oBy) + / g(zs)ds — / z5d B
t t
and g(z) := £z. let k := £ is Sharpe Ratio but ; is Coefficient of variation .

Question 1: For IID model, there exists a g such that

. Sn S —npg
1 E = .
i sup Bo [90 ( N )] Eglp (0B1)], Vo € Cy(R)

Question 2: Can we obtain it closed form for ¢(z) = Ij<,<j?
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1. Methods CLT

The characteristic function is indispensable for the study of general limit theorems.
Such a tool does not work in the nonlinear case.

* Bernolli proved for special case: Binomial distribution.
* Lindeberg: Semi-group, Stein method to prove CLT.
* Levy: Characteristic function: LLN and CLT.

* Peng:PDE
In this paper, we use BSDE.
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2. LLN and CLT for sub-linear expectations

* Maximum distribution :

THEOREM 1 (Peng 2007,2008) {X;}°, IID random variables, i =
E[X1], p:= E[X4]. Then for any continuous and linear growth function ¢,

(:5)

*CLT: S, =3 Xi; S, ="V

E — sup ¢o(x), asn — oo.

p<x<p

THEOREM 2 (Peng 2006, 2008) {X,} IID, zero means E|Y;] = E[-Y;] = 0,
finite variance E[Y?] = 52, —E[-Y{’] = o2, Then,

S, S,
¢(T%>

where & is G-normal under E[-].
Method: PDE.
In this paper, we use BSDE.

E — Elp(n +¢)]
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2.1. Conditions

(1) Common upper and lower expectations:

E[X,] = sup Eg[X,]| =1, £&[X,]:= inf EglX,|=—-E[-X,]=u
QeP QeP -

(2) Conditional upper and lower expectations:

EY |G, =esssup EglY | G,), €Y |G, =ess inf EglY | G,
QeP QeP

(3) Independence: (X;) are recursively P-independent if for any n

E[X,|Gna] =E[X,|=pand E[X, |G, 1] =& [X,] = p

(4) Consistency: Say that the r.v.s (X;) are P-consistent if, for any n and ¢ €

C' (R?) satisfying ¢ <Z;:11 X, Xn) € H,
n—1 n—1

o (Z Xi,Xn> [ G o (Z Xi,Xn>]
i=1 i=1

(5) Unambiguous conditional variance: Say that (X;) has an unambiguous condi-

E|E =K

tional variance o* if

EQ |:<Xz — EQ[XZ’gZ_l])2 |QZ~_1] = 0'2 for all Q € P and > 1.
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3. Main results:

THEOREM 3 Let the sequence (X;) be such that, for each i, X; € H with upper and
lower means i, j and X; has unambiguous conditional variance o2 > 0. Suppose
also that (X;) satisfies the Lindeberg’s condition

1 n
nh—{goEZE [|XZ’2[{|X1|>\/55}] =0, Ve>0.
1=1

Recursive P-independence and P-consistency. Then

Upper probability

_ ] — 1 1
lim sup ¢ (CL < EZ Xi+ 7n Z ;(Xi — EqlXilgi—1]) < b)

"0 QeP i—1 i—1
(E-p)b-a) . _
D, (b) —e 7 &, (a) if a+b>n+p
- B (F—p) (b—a) B
O y(—a)—e 2O 5(=b) if a+b<fi+p
Lower probability:
i inf 0 [a< 1S x4 f:l(x- EolXiG 1)) < b
neogep G\ =l Jn g T e =
- 1=1 1=1
[ Du(b) — e Cd(a), ifa+b<i+p
O, (—a)—e 2 0D, (<b), ifat+b>T+p



Main Question

4. Lemma-1

THEOREM 4 Let the sequence (X;) be such that, for each i, X; € H with upper and
lower means i, i and X; has unambiguous conditional variance o2 > 0. Suppose
also that (X;) satisfies the Lindeberg’s condition

1 )
7}1—{20 E ZlE |:’Xz’ I{|XZ|>\/55}:| =0, Ve > 0.
Recursive P-independence and P-consistency. Then, for any ¢ € C ([—o0, 00)),

lim sup Eq
n—oo QGP

© (%Z X+ % Z %(Xz' — E@[&\Qm]))] = &Eylp (B1)),

where:Eyp (B1)] = Yo, given that (Yy, Z;) is the solution of the BSDE

1 1
}Q:¢(Bl)+/ ( max ,LLSZS> ds—/ ZydBg, 0 <t <1.
t t

Ps€ [g,ﬁ]



Reports

5. Lemma-2

LEMMA 1 Adopt the assumptions in Theorem.
(i) If @ is increasing, and Eg|(X; — 1)?*|Gi_1] = 0 forany Q € P and i > 1, then

© (%;XZ + %;é(& — ﬁ))

(ii) If ¢ is decreasing, and Eq|(X; — 1)?|Gi—1] = 02, forany Q € P and i > 1, then

© (%;Xz + %;%(Xi — ﬁ))

Where€ is a standard normal random variable.

lim sup Eq
n—oo QEP

= Eplp(E+n)].

lim sup Eg
n—oo QE'P

=Ep [0 (§+ )]
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6. Lemma-3

THEOREM 5 Let @ is symmetric function in the sense that o(—x) = @(+x) for all
xr € R. Suppose (Yy, Zy) is the adapted solution of the following BSDE

T T
Y = o(Br) + k:/ \Z,|ds —/ Z,dB,, (1)
t t
Then,
(i) if ' (x) is increasing for all x € R, we have
Zt . Bt > 0a.s.

which implies that sgn(Z;) = sgn(B;) a.s .
(ii) if ©'(x) is decreasing for all x € R, we have

Zt'Bt S 0a.s.

which implies sgn(Z;) = —sgn(By).
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7. Example: Finite fuel follower problem

T T
Y;:B%—/ |Zs|ds—/ Z,dDB,.
t t

since sgn(Z;) = sgn(B;). the BSDE is actually:

T T
Y, = B — / sgn(B,) Zds — / Z.dB,.
t t

1 [T—t (|1Bi| =T +1)?
Y, == —(|B| -T+t—1 —
t 2+ I (‘ t‘ + )eXp{ 2<T—t)
1 By —T+t
+{(|Bt|—T+t)2+T—t——}cb(‘ d >
2 T —t
1 By +T —t
+ BB +T —t—2)® (—‘ i+ )
2 T —t



8. Lemma-4

THEOREM 6 Let d = “7“’, then the solution (Y;, Z;) of the BSDE

T T
Vi = 1 (Br) + / (RZF — pZo)ds - / Z.dB.
t t

is given by
v = o |Bod+SET 0| - BET ) — e
VI —t
i i fi—p L
. e%ba)@( |Bt_d+T_(T_t)|—T_(T—t)+bT>
T—1 ’

7, — sgn|By — d + ﬁ%(T — )] {e_ﬁ_g

2m(T — 1)
where . -
i B —d+ (T 1) = 5= (T — 1) + 5P
t' 2AT —t
7B d AT )] = AT 1) -
t’ 2T —t)

2)



9. In particular

Lett =0,

where (Y}, Z,) solves the following BSDE:

T T
Y, = Ljuy(Br) + / (pZ+ —TZ;)ds — / Z.dB,.
t t

®,, 1s the normal distribution function with mean .

I
—N—
HH
=
=
|
Cbl
b,
=
T
&
HH
=
&
=)
+
S
A
=
+
=



10. Confidence regions

Consider the model
=0+ X,,i=1,2,...,

where 6 € R is the parameter of interest, (Y;) describes observable data, and (X;)
i1s an unobservable error process. The usual assumption on errors is that they are
1.1.d. with zero mean. Since errors are unobservable, a weaker a priori specification
is natural. Thus assume the IID model, with ; and 7z given. Then (Y) also conforms

to the IID model. Normalize all variances to equal 1.
Let

] — ] —
Vg =—> Yi+—=> (Yi— EolYi|Gi-
Q n; \/ﬁ;( Q[ | 1])
7 —lzn:YJrizn:(Y——)

l — 1 —
gn:E;m%;m—g)
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and note that V,, < v, o < V,. Finally, define the random intervals

Cn’Q = [‘DnyQ — b, ‘Ifn’Q — CL] and
C, = [@n — b,gn — CL} D) Cn,Q.

E 7] [1{a§ Blgb}]. (The indicated lower expectation can be calculated by switching

Fix a coverage probability 1 — o, 0 < a < 1, and let a < b satisfy 1 — a <

and 1 everywhere in (27?)).

Then
I gdphip @O € Cu) 2 T, QU € Cne)
ppolesrsbizi-a

where the equality is due to the CLT (translated for lower expectations, using
infg Eg (14) = 1 — supg Eq (1.4¢)) applied to (Y;). Thus, if ¢ is the true parameter
value, then, for large samples, C,, contains # with probability at least 1 — « according
to every probability measure in PP . (It follows that, even where 1+ = 0, critical
values that minimize b — a will typically not be symmetric about the origin.)



Thank you !
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