Introduction Introduction Introduction Main Question Reports Introduction Main Question Home Page Page 1 of 20 Go Back Full Screen Close Quit

Central limit theorem for a set of probability measures

ZENGJING CHEN

SHANDONG UNIVERSITY

Joint work with Larry G. Epstein

Main Question

Home Page

Title Page

Page 2 of 20

Go Back

Full Screen

Close

Quit

0.1. Motivation

Assumption: A sequence of IID r.v. $\{X_i\}$, $S_n := \sum_{i=1}^n X_i$

Theorem 1: $E_P[X_1] = \mu_p$, $E_P[(X_1 - \mu_p)^2] = \sigma^2$

$$\mathbf{P}\left(a \leq \frac{S_n}{n} + \frac{S_n - n\mu_p}{\sqrt{n}} < b\right) \to \Phi\left(\frac{b - \mu_p}{\sigma}\right) - \Phi\left(\frac{a - \mu_p}{\sigma}\right), \forall a \leq b \in R,$$

Question: If P is not unique, $P \in \mathcal{P}$ the set of probability measures is ambiguity, What is Central limit theorem?

(1) Capacity: (v, V), where

$$v(A) = \inf_{Q \in \mathcal{P}} Q(A), \quad V(A) = \sup_{Q \in \mathcal{P}} Q(A).$$

(2) Lower-upper expectation: $\mathcal{E}[\xi]$ and $\mathbb{E}[\xi]$

$$\mathcal{E}[\xi] = \inf_{Q \in \mathcal{P}} E_Q[\xi], \qquad \mathbb{E}[\xi] = \sup_{Q \in \mathcal{P}} E_Q[\xi]$$

What is the distribution of $\frac{S_n}{n} + \frac{S_n - n\mu_Q}{\sqrt{n}}$?

Main Question

Home Page

Title Page

Page 3 of 20

Go Back

Full Screen

Close

Quit

0.2. Applications: Statistics and Finance

Confidence regions and Statistical hypothesis testing

$$E_Q[X_i] = \mu_Q, \mathbb{E}[X_i] = \overline{\mu}, \mathcal{E}[X_i] = \underline{\mu}.$$

$$\sup_{Q \in \mathcal{P}} Q \left(a \le \frac{S_n}{n} + \frac{S_n - n\mu_Q}{\sqrt{n}} < b \right) \to ?$$

$$\inf_{Q \in \mathcal{P}} Q\left(a \le \frac{S_n}{n} + \frac{S_n - n\mu_Q}{\sqrt{n}} < b\right) \to ?$$

Mathematical finance, Pricing in incomplete markets, VaR:

$$\lim_{n \to \infty} \sup_{Q \in \mathcal{P}} Q\left(\frac{1}{n} \sum_{i=1}^{n} X_i + \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \overline{\mu}) \ge x\right) = ?$$

$$\lim_{n \to \infty} \sup_{Q \in \mathcal{P}} Q\left(\frac{1}{n} \sum_{i=1}^{n} X_i + \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \underline{\mu}) \le x\right) = ?$$

Main Question

Home Page

Title Page

Page 4 of 20

Go Back

Full Screen

Close

Quit

0.3. IID: Indistinguishable and independently distributed, Epstein(2005) Recursive Utility

- (1) A sequence r.v.s (X_i) on the measurable space (Ω, \mathcal{F}) .
- (2) $\mathcal{G}_n = \sigma(X_1, ..., X_n)$ and $\mathcal{G} = \bigcup_{1}^{\infty} \mathcal{G}_n$.
- (3) \mathcal{P} a set of probability measures on (Ω, \mathcal{G}) and \mathcal{P} are equivalent on each \mathcal{G}_n .
- (4) Upper and lower expectations:

$$\mathbb{E}[Y] := \sup_{Q \in \mathcal{P}} E_Q[Y], \quad \mathcal{E}[Y] := \inf_{Q \in \mathcal{P}} E_Q[Y] = -\mathbb{E}[-Y],$$

(5) Conditional upper and lower expectations:

$$\mathbb{E}\left[Y\mid\mathcal{G}_{n}\right]\equiv ess\sup_{Q\in\mathcal{P}}E_{Q}\left[Y\mid\mathcal{G}_{n}\right],\ \mathcal{E}\left[Y\mid\mathcal{G}_{n}\right]\equiv ess\inf_{Q\in\mathcal{P}}E_{Q}\left[Y\mid\mathcal{G}_{n}\right]$$

(6) Independence: (X_i) are recursively \mathcal{P} -independent if for any n

$$\mathbb{E}\left[X_n \mid \mathcal{G}_{n-1}\right] = \mathbb{E}\left[X_n\right] = \overline{\mu} \text{ and } \mathcal{E}\left[X_n \mid \mathcal{G}_{n-1}\right] = \mathcal{E}\left[X_n\right] = \underline{\mu}$$

(7) Time Consistency: Say that the r.v.s (X_i) are \mathcal{P} -consistent if, for any n and $\varphi \in C(\mathbb{R}^2)$ satisfying $\varphi\left(\sum_{i=1}^{n-1} X_i, X_n\right) \in \mathcal{H}$,

$$\mathbb{E}\left[\mathbb{E}\left[\varphi\left(\sum_{i=1}^{n-1}X_i,X_n\right)\mid\mathcal{G}_{n-1}\right]\right] = \mathbb{E}\left[\varphi\left(\sum_{i=1}^{n-1}X_i,X_n\right)\right]$$

Introduction

Introduction

Main Question Reports

Introduction

Main Question

Home Page

Title Page

→

Page 5 of 20

Go Back

Full Screen

Close

Quit

0.4. Bifurcation Model: Dynamic Risk Measures, Bion-Nadal(2006)

Let $(\Omega_j, \mathcal{F}_j)$, $j = 1, 2, \cdots$, be a sequence of measurable spaces, and (Ω, \mathcal{F}) is the product space $\left(\prod_{j=1}^{\infty} \Omega_j, \prod_{j=1}^{\infty} \mathcal{F}_j\right)$. Let \mathcal{P}_j be a set of probability measures on $(\Omega_j, \mathcal{F}_j)$, $j = 1, 2, \cdots$, respectively, and \mathcal{P} is the set of all product measures on (Ω, \mathcal{F}) that can be formed by taking selections from each \mathcal{P}_j .

$$P\left(B^n \times \prod_{j=n+1}^{\infty} \Omega_j\right) := P_n(B^n), \quad B^n \in \prod_{j=1}^n \mathcal{F}_j$$

$$P_n(B^n) := \int_{\Omega_1} P_1(d\omega_1) \int_{\Omega_2} P_{1,2}(\omega_1, d\omega_2) \cdots \int_{\Omega_n} I_{B_n}(\omega_1, \cdots, \omega_n) P_{n-1,n}(\omega^{(n-1)}, d\omega_n).$$

and $\omega^{(n-1)}=(\omega_1,\omega_2,\cdots,\omega_{n-1})\in\prod_{j=1}^{n-1}\Omega_j$. Probability kernel $P_{i-1,i}(\omega^{(i-1)},d\omega_i)$ from

 $(\prod_{i=1}^{i-1}\Omega_j,\prod_{j=1}^{i-1}\mathcal{F}_j)$ to (Ω_i,\mathcal{F}_i) defined :

$$P_{i-1,i}(\omega^{(i-1)}, d\omega_i) = I_{A_{i-1}}(\omega^{(i-1)}) P_{\overline{\mu}}^i(d\omega_i) + I_{A_{i-1}^c}(\omega^{(i-1)}) P_{\underline{\mu}}^i(d\omega_i)$$

where $A_{i-1} \in \prod_{j=1}^{i-1} \mathcal{F}_j$, $i \geq 2$.

Main Question

Home Page

Title Page

Page 6 of 20

Go Back

Full Screen

Close

Quit

0.5. Motivation

Assumption: A sequence of IID r.v. $\{X_i\}$, $S_n := \sum_{i=1}^n X_i$

Theorem 1: $E_P[X_1] = \mu_p$, $E_P[(X_1 - \mu^2)] = \sigma^2$, then

$$\lim_{n\to\infty} E_P\left[\varphi\left(\frac{S_n}{n} + \frac{S_n - n\mu_P}{\sqrt{n}}\right)\right] = \mathcal{E}_g\left[\varphi\left(\sigma B_1\right)\right], \quad \forall \varphi \in C_b(R).$$

Where $\mathcal{E}_q[\sigma B_1]$ is the value of the solution $\{y_t\}$ of the BSDE at t=0

$$y_t = \varphi(\sigma B_1) + \int_t^1 g(z_s) ds - \int_t^1 z_s dB_s$$

and $g(z) := \frac{\mu}{\sigma} z$. let $k := \frac{\mu}{\sigma}$ is Sharpe Ratio but $\frac{1}{k}$ is Coefficient of variation .

Question 1: For IID model, there exists a g such that

$$\lim_{n\to\infty} \sup_{Q\in\mathcal{P}} E_Q \left[\varphi \left(\frac{S_n}{n} + \frac{S_n - n\mu_Q}{\sqrt{n}} \right) \right] = \mathcal{E}_g \left[\varphi \left(\sigma B_1 \right) \right], \quad \forall \varphi \in C_b(R).$$

Question 2: Can we obtain it closed form for $\varphi(x) = I_{[a \le x \le b]}$?

Home Page

Title Page

Page 7 of 20

Go Back

Full Screen

Close

Quit

1. Methods CLT

The characteristic function is indispensable for the study of general limit theorems. Such a tool does not work in the nonlinear case.

- * Bernolli proved for special case: Binomial distribution.
- * Lindeberg: Semi-group, Stein method to prove CLT.
- * Levy: Characteristic function: LLN and CLT.
- ★ Peng:PDEIn this paper, we use BSDE.

Introduction

Introduction

Main Question

Reports

Introduction

Main Question

Home Page

Title Page

Page 8 of 20

Go Back

Full Screen

Close

Quit

2. LLN and CLT for sub-linear expectations

* Maximum distribution:

THEOREM 1 (Peng 2007,2008) $\{X_i\}_{i=1}^{\infty}$ IID random variables, $\overline{\mu} := \mathbb{E}[X_1], \ \mu := \mathcal{E}[X_1]$. Then for any continuous and linear growth function ϕ ,

$$\mathbb{E}\left[\phi\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)\right] \to \sup_{\underline{\mu} \leq x \leq \overline{\mu}}\phi(x), \text{ as } n \to \infty.$$

 \star CLT : $S_n = \sum_{i=1}^n X_i$; $\hat{S}_n = \sum_{i=1}^n Y_i$.

THEOREM 2 (Peng 2006, 2008) $\{X_n\}$ IID, zero means $\mathbb{E}[Y_1] = \mathbb{E}[-Y_1] = 0$, finite variance $\mathbb{E}[Y_1^2] = \overline{\sigma}^2$, $-\mathbb{E}[-Y_1^2] = \underline{\sigma}^2$, Then,

$$\mathbb{E}\left[\phi\left(\frac{S_n}{n} + \frac{\hat{S}_n}{\sqrt{n}}\right)\right] \to \mathbb{E}[\phi(\eta + \xi)]$$

where ξ is G-normal under $\mathbb{E}[\cdot]$.

Method: PDE.

In this paper, we use BSDE.

Introduction

Introduction

Main Question

Reports

Introduction

Main Question

Home Page

Title Page

Page 9 of 20

Go Back

Full Screen

Close

Quit

2.1. Conditions

(1) Common upper and lower expectations:

$$\mathbb{E}[X_n] := \sup_{Q \in \mathcal{P}} E_Q[X_n] = \overline{\mu}, \quad \mathcal{E}[X_n] := \inf_{Q \in \mathcal{P}} E_Q[X_n] = -\mathbb{E}[-X_n] = \underline{\mu}$$

(2) Conditional upper and lower expectations:

$$\mathbb{E}\left[Y\mid\mathcal{G}_{n}\right]\equiv ess\sup_{Q\in\mathcal{P}}E_{Q}\left[Y\mid\mathcal{G}_{n}\right],\ \mathcal{E}\left[Y\mid\mathcal{G}_{n}\right]\equiv ess\inf_{Q\in\mathcal{P}}E_{Q}\left[Y\mid\mathcal{G}_{n}\right]$$

(3) Independence: (X_i) are recursively \mathcal{P} -independent if for any n

$$\mathbb{E}\left[X_n \mid \mathcal{G}_{n-1}\right] = \mathbb{E}\left[X_n\right] = \overline{\mu} \text{ and } \mathcal{E}\left[X_n \mid \mathcal{G}_{n-1}\right] = \mathcal{E}\left[X_n\right] = \underline{\mu}$$

(4) Consistency: Say that the r.v.s (X_i) are \mathcal{P} -consistent if, for any n and $\varphi \in C(\mathbb{R}^2)$ satisfying $\varphi\left(\sum_{i=1}^{n-1} X_i, X_n\right) \in \mathcal{H}$,

$$\mathbb{E}\left[\mathbb{E}\left[\varphi\left(\sum_{i=1}^{n-1}X_i,X_n\right)\mid\mathcal{G}_{n-1}\right]\right] = \mathbb{E}\left[\varphi\left(\sum_{i=1}^{n-1}X_i,X_n\right)\right]$$

(5) Unambiguous conditional variance: Say that (X_i) has an *unambiguous conditional variance* σ^2 if

$$E_Q\left[\left(X_i - E_Q[X_i|\mathcal{G}_{i-1}]\right)^2 | \mathcal{G}_{i-1}\right] = \sigma^2 \text{ for all } Q \in \mathcal{P} \text{ and } i \geq 1.$$

Introduction

Introduction

Main Question

Reports

Introduction

Main Question

Home Page

Title Page

Page 10 of 20

Go Back

Full Screen

Close

Quit

3. Main results:

THEOREM 3 Let the sequence (X_i) be such that, for each $i, X_i \in \mathcal{H}$ with upper and lower means $\overline{\mu}, \underline{\mu}$ and X_i has unambiguous conditional variance $\sigma^2 > 0$. Suppose also that (X_i) satisfies the Lindeberg's condition

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[|X_i|^2 I_{\{|X_i| > \sqrt{n\varepsilon}\}} \right] = 0, \quad \forall \varepsilon > 0.$$

Recursive P-independence and P-consistency. Then

Upper probability

$$\lim_{n \to \infty} \sup_{Q \in \mathcal{P}} Q \left(a \le \frac{1}{n} \sum_{i=1}^{n} X_i + \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{1}{\sigma} (X_i - E_Q[X_i | \mathcal{G}_{i-1}]) \le b \right)$$

$$= \begin{cases} \Phi_{\underline{\mu}}(b) - e^{-\frac{(\overline{\mu} - \underline{\mu})(b - a)}{2}} \Phi_{\underline{\mu}}(a) & \text{if } a + b > \overline{\mu} + \underline{\mu} \\ \Phi_{-\overline{\mu}}(-a) - e^{-\frac{(\overline{\mu} - \underline{\mu})(b - a)}{2}} \Phi_{-\overline{\mu}}(-b) & \text{if } a + b \le \overline{\mu} + \underline{\mu} \end{cases}$$

Lower probability:

$$\lim_{n \to \infty} \inf_{Q \in \mathcal{P}} Q \left(a \le \frac{1}{n} \sum_{i=1}^{n} X_i + \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{1}{\sigma} (X_i - E_Q[X_i | \mathcal{G}_{i-1}]) \le b \right)$$

$$= \begin{cases} \Phi_{\overline{\mu}}(b) - e^{\frac{\overline{\mu} - \underline{\mu}}{2}(b - a)} \Phi_{\overline{\mu}}(a), & \text{if } a + b < \overline{\mu} + \underline{\mu} \\ \Phi_{-\mu}(-a) - e^{\frac{\overline{\mu} - \underline{\mu}}{2}(b - a)} \Phi_{-\mu}(-b), & \text{if } a + b > \overline{\mu} + \underline{\mu}. \end{cases}$$

Introduction Introduction

Introduction

Main Question

Reports

Introduction

Main Question

Home Page

Title Page

Page 11 of 20

Go Back

Full Screen

Close

Quit

4. **Lemma-1**

THEOREM 4 Let the sequence (X_i) be such that, for each $i, X_i \in \mathcal{H}$ with upper and lower means $\overline{\mu}, \underline{\mu}$ and X_i has unambiguous conditional variance $\sigma^2 > 0$. Suppose also that (X_i) satisfies the Lindeberg's condition

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[|X_i|^2 I_{\{|X_i| > \sqrt{n}\varepsilon\}} \right] = 0, \quad \forall \varepsilon > 0.$$

Recursive \mathcal{P} -independence and \mathcal{P} -consistency. Then, for any $\varphi \in C([-\infty,\infty])$,

$$\lim_{n\to\infty} \sup_{Q\in\mathcal{P}} E_Q\left[\varphi\left(\frac{1}{n}\sum_{i=1}^n X_i + \frac{1}{\sqrt{n}}\sum_{i=1}^n \frac{1}{\sigma}(X_i - E_Q[X_i|\mathcal{G}_{i-1}])\right)\right] = \mathcal{E}_g[\varphi(B_1)],$$

where: $\mathcal{E}_{g}[\varphi(B_{1})] = Y_{0}$, given that (Y_{t}, Z_{t}) is the solution of the BSDE

$$Y_t = \varphi(B_1) + \int_t^1 \left(\max_{\mu_s \in [\underline{\mu}, \overline{\mu}]} \mu_s Z_s \right) ds - \int_t^1 Z_s dB_s, \ 0 \le t \le 1.$$

Introduction

Introduction

Main Question

Reports

Introduction

Main Question

Home Page

Title Page

Page 12 of 20

Go Back

Full Screen

Close

Quit

5. Lemma-2

LEMMA 1 Adopt the assumptions in Theorem.

(i) If φ is increasing, and $E_Q[(X_i - \overline{\mu})^2 | \mathcal{G}_{i-1}] = \sigma^2$, for any $Q \in \mathcal{P}$ and $i \geq 1$, then

$$\lim_{n \to \infty} \sup_{Q \in \mathcal{P}} E_Q \left[\varphi \left(\frac{1}{n} \sum_{i=1}^n X_i + \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{1}{\sigma} (X_i - \overline{\mu}) \right) \right] = E_P \left[\varphi \left(\xi + \overline{\mu} \right) \right].$$

(ii) If φ is decreasing, and $E_Q[(X_i - \mu)^2 | \mathcal{G}_{i-1}] = \sigma^2$, for any $Q \in \mathcal{P}$ and $i \geq 1$, then

$$\lim_{n \to \infty} \sup_{Q \in \mathcal{P}} E_Q \left[\varphi \left(\frac{1}{n} \sum_{i=1}^n X_i + \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{1}{\sigma} (X_i - \underline{\mu}) \right) \right] = E_P \left[\varphi \left(\xi + \underline{\mu} \right) \right]$$

Where ξ is a standard normal random variable.

Introduction Introduction

Introduction

Main Question Reports

Introduction

Main Question

Home Page

Title Page

Page 13 of 20

Go Back

Full Screen

Close

Quit

6. Lemma-**3**

THEOREM 5 Let φ is symmetric function in the sense that $\varphi(-x) = \varphi(+x)$ for all $x \in R$. Suppose (Y_t, Z_t) is the adapted solution of the following BSDE

$$Y_t = \varphi(B_T) + k \int_t^T |Z_s| ds - \int_t^T Z_s dB_s, \tag{1}$$

Then,

(i) if $\varphi'(x)$ is increasing for all $x \in R$, we have

$$Z_t \cdot B_t \geq 0 \ a.s.$$

which implies that $sgn(Z_t) = sgn(B_t)$ a.s.

(ii) if $\varphi'(x)$ is decreasing for all $x \in R$, we have

$$Z_t \cdot B_t \leq 0 \ a.s.$$

which implies $sgn(Z_t) = -sgn(B_t)$.

Main Question

Home Page

Title Page

Page 14 of 20

Go Back

Full Screen

Close

Quit

7. Example: Finite fuel follower problem

$$Y_t = B_T^2 - \int_t^T |Z_s| ds - \int_t^T Z_s dB_s.$$

since $sgn(Z_t) = sgn(B_t)$. the BSDE is actually:

$$Y_t = B_T^2 - \int_t^T \operatorname{sgn}(B_s) Z_s ds - \int_t^T Z_s dB_s.$$

$$Y_{t} = \frac{1}{2} + \sqrt{\frac{T - t}{2\pi}} (|B_{t}| - T + t - 1) \exp\left\{-\frac{(|B_{t}| - T + t)^{2}}{2(T - t)}\right\}$$

$$+ \left\{(|B_{t}| - T + t)^{2} + T - t - \frac{1}{2}\right\} \Phi\left(\frac{|B_{t}| - T + t}{\sqrt{T - t}}\right)$$

$$+ e^{2|B_{t}|} (|B_{t}| + T - t - \frac{1}{2}) \Phi\left(-\frac{|B_{t}| + T - t}{\sqrt{T - t}}\right)$$

Introduction

Introduction

Main Question

Reports

Introduction

Main Question

Home Page

Title Page

Page 15 of 20

Go Back

Full Screen

Close

Quit

8. Lemma-4

THEOREM 6 Let $d = \frac{a+b}{2}$, then the solution (Y_t, Z_t) of the BSDE

$$Y_{t} = 1_{[a,b)}(B_{T}) + \int_{t}^{T} (\overline{\mu}Z_{s}^{+} - \underline{\mu}Z_{s}^{-})ds - \int_{t}^{T} Z_{s}dB_{s}$$
 (2)

is given by

$$Y_{t} = \Phi\left(-\frac{|B_{t} - d + \frac{\overline{\mu} + \underline{\mu}}{2}(T - t)| - \frac{\overline{\mu} - \underline{\mu}}{2}(T - t) - \frac{b - a}{2}}{\sqrt{T - t}}\right) - e^{-\frac{\overline{\mu} - \underline{\mu}}{2}(b - a)}\Phi\left(-\frac{|B_{t} - d + \frac{\overline{\mu} + \underline{\mu}}{2}(T - t)| - \frac{\overline{\mu} - \underline{\mu}}{2}(T - t) + \frac{b - a}{2}}{\sqrt{T - t}}\right),$$

$$Z_{t} = \frac{sgn[B_{t} - d + \frac{\mu + \underline{\mu}}{2}(T - t)]}{\sqrt{2\pi(T - t)}} \left\{ e^{-\frac{\overline{\mu} - \underline{\mu}}{2}(b - a)} \cdot \exp\{\widetilde{A}_{t}\} - \exp\{\widetilde{L}_{t}\} \right\},\,$$

where

$$\widetilde{A}_{t} := -\frac{\left[|B_{t} - d + \frac{\overline{\mu} + \underline{\mu}}{2} (T - t)| - \frac{\overline{\mu} - \underline{\mu}}{2} (T - t) + \frac{b - a}{2} \right]^{2}}{2(T - t)}$$

$$\widetilde{L}_{t} := \frac{\left[|B_{t} - d + \frac{\overline{\mu} + \underline{\mu}}{2} (T - t)| - \frac{\overline{\mu} - \underline{\mu}}{2} (T - t) - \frac{b - a}{2} \right]^{2}}{2(T - t)}$$

Introduction
Introduction

Main Question

Reports Introduction

Main Question

Home Page

Title Page

Page 16 of 20

Go Back

Full Screen

Close

Quit

9. In particular

Let t = 0,

$$Y_{0} = \Phi\left(-\left|\frac{\overline{\mu}+\underline{\mu}}{2} - d\right| + \frac{\overline{\mu}-\underline{\mu}}{2} + \frac{b-a}{2}\right) - e^{-\frac{\overline{\mu}-\underline{\mu}}{2}(b-a)}\Phi\left(-\left|\frac{\overline{\mu}+\underline{\mu}}{2} - d\right| + \frac{\overline{\mu}-\underline{\mu}}{2} - \frac{b-a}{2}\right)$$

$$= \begin{cases} \Phi_{\underline{\mu}}(b) - e^{-\frac{\overline{\mu}-\underline{\mu}}{2}(b-a)}\Phi_{\underline{\mu}}(a), & a+b < \overline{\mu} + \underline{\mu} \\ \Phi_{-\overline{\mu}}(-a) - e^{-\frac{\overline{\mu}-\underline{\mu}}{2}(b-a)}\Phi_{-\overline{\mu}}(-b), & a+b > \overline{\mu} + \underline{\mu}. \end{cases}$$

Similarly,

$$\widehat{Y}_{0} = \Phi\left(-\left|\frac{\overline{\mu}+\underline{\mu}}{2} - d\right| - \frac{\overline{\mu}-\underline{\mu}}{2} + \frac{b-a}{2}\right) - e^{\frac{\overline{\mu}-\underline{\mu}}{2}(b-a)}\Phi\left(-\left|\frac{\overline{\mu}+\underline{\mu}}{2} - d\right| - \frac{\overline{\mu}-\underline{\mu}}{2} - \frac{b-a}{2}\right) \\
= \begin{cases}
\Phi_{\overline{\mu}}(b) - e^{\frac{\overline{\mu}-\underline{\mu}}{2}(b-a)}\Phi_{\overline{\mu}}(a), & a+b < \overline{\mu} + \underline{\mu} \\
\Phi_{-\underline{\mu}}(-a) - e^{\frac{\overline{\mu}-\underline{\mu}}{2}(b-a)}\Phi_{-\underline{\mu}}(-b), & a+b > \overline{\mu} + \underline{\mu}.
\end{cases}$$

where $(\widehat{Y}_t, \widehat{Z}_t)$ solves the following BSDE:

$$\widehat{Y}_t = 1_{[a,b)}(B_T) + \int_t^T (\underline{\mu}\widehat{Z}_s^+ - \overline{\mu}\widehat{Z}_s^-) ds - \int_t^T \widehat{Z}_s dB_s.$$

 Φ_{μ} is the normal distribution function with mean μ .

Home Page

Title Page

Page 17 of 20

Go Back

Full Screen

Close

Quit

10. Confidence regions

Consider the model

$$Y_i = \theta + X_i, i = 1, 2, ...,$$

where $\theta \in \mathbb{R}$ is the parameter of interest, (Y_i) describes observable data, and (X_i) is an unobservable error process. The usual assumption on errors is that they are i.i.d. with zero mean. Since errors are unobservable, a weaker a priori specification is natural. Thus assume the IID model, with $\underline{\mu}$ and $\overline{\mu}$ given. Then (Y_i) also conforms to the IID model. Normalize all variances to equal 1.

$$\Psi_{n,Q} = \frac{1}{n} \sum_{i=1}^{n} Y_i + \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (Y_i - E_Q[Y_i | \mathcal{G}_{i-1}])$$

$$\overline{\Psi}_n = \frac{1}{n} \sum_{i=1}^{n} Y_i + \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (Y_i - \overline{\mu})$$

$$\underline{\Psi}_n = \frac{1}{n} \sum_{i=1}^{n} Y_i + \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (Y_i - \underline{\mu})$$

Main Question

Home Page

Title Page

Page 18 of 20

Go Back

Full Screen

Close

Quit

and note that $\overline{\Psi}_n \leq \Psi_{n,Q} \leq \underline{\Psi}_n$. Finally, define the random intervals

$$\mathcal{C}_{n,Q} = [\Psi_{n,Q} - b, \Psi_{n,Q} - a]$$
 and $\mathcal{C}_n = [\overline{\Psi}_n - b, \underline{\Psi}_n - a] \supset \mathcal{C}_{n,Q}.$

Fix a coverage probability $1 - \alpha$, $0 < \alpha < 1$, and let a < b satisfy $1 - \alpha \le \mathcal{E}_{[\underline{\mu},\overline{\mu}]}[\mathbf{1}_{\{a \le B_1 \le b\}}]$. (The indicated lower expectation can be calculated by switching $\underline{\mu}$ and $\overline{\mu}$ everywhere in (??)).

Then

$$\lim_{n \to \infty} \inf_{Q \in \mathcal{P}^{IID}} Q(\theta \in \mathcal{C}_n) \ge \lim_{n \to \infty} \inf_{Q \in \mathcal{P}^{IID}} Q(\theta \in \mathcal{C}_{n,Q})$$
$$= \inf_{Q \in \mathcal{P}} Q(a \le B_1 \le b) \ge 1 - \alpha$$

where the equality is due to the CLT (translated for lower expectations, using $\inf_Q E_Q(\mathbf{1}_A) = 1 - \sup_Q E_Q(\mathbf{1}_{A^c})$) applied to (Y_i) . Thus, if θ is the true parameter value, then, for large samples, \mathcal{C}_n contains θ with probability at least $1 - \alpha$ according to every probability measure in \mathcal{P}^{IID} . (It follows that, even where $\underline{\mu} + \overline{\mu} = 0$, critical values that minimize b - a will typically not be symmetric about the origin.)

Introduction Introduction Introduction Main Question Reports Introduction Main Question Home Page Title Page **>>** Page 19 of 20 Go Back Full Screen Close Quit

Thank you!

Introduction Introduction Introduction Main Question Reports Introduction Main Question Home Page Title Page Page 20 of 20 Go Back Full Screen Close Quit